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Selection and stabilization of spatiotemporal patterns in two-dimensional coupled map lattices
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A method for the stabilization and manipulation of stable and unstable spatiotemporal patterns of a coupled
map lattice is presented. The selection of stable pattern states and the stabilization of unstable ones are
achieved by using nonlinear feedback that contains the structural and dynamical information of the target
patterns. The feedback vanishes once the spatiotemporal pattern is stabilized or selected.
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The pattern-forming phenomena in spatially extended s
tems have attracted much attention recently@1–5#. Such sys-
tems often exhibit turbulence or spatiotemporal chaos~STC!,
in which many stable and unstable regular modes of s
tiotemporal patterns are embedded. In many cases, how
it is desirable to make complex systems operate in hig
nonlinear regimes while retaining certain temporal and
spatial coherence. Recently, there have been reports of
bilizing unstable patterns in spatially extended syste
@6–9#. The unstable states in such systems are typically h
dimensional and involve multiple stable and unstable mod
therefore, simple control approaches are unable to stabili
specified spatiotemporal pattern. In this paper we prese
technique that allows us to select and stabilize such unst
states. Our method can be regarded as a generalization o
nonlinear feedback approach developed by Pyragas@10,11#.

We consider a two-dimensional coupled map latt
~CML! @12–17#

xn11
i , j 5~12e! f ~xn11

i , j !1
e

4
@ f ~xn

i 21,j !1 f ~xn
i 11,j !1 f ~xn

i , j 21!

1 f ~xn
i , j 11!#, ~1!

where n is a discrete time step and (i , j ) denotes a two-
dimensional lattice point (i , j 51,2, . . . ,N, whereN denotes
the system size!. The mapping function is chosen to be th
logistic mapf (x)5ax(12x). For convenience we introduc

F~$xn%!5~12e! f ~xn11
i , j !1

e

4
@ f ~xn

i 21,j !1 f ~xn
i 11,j !

1 f ~xn
i , j 21!1 f ~xn

i , j 11!#,

where $xn% represents a set of states including the state
site (i , j ) and its neighboring sites. Note that the functi
F($xn%) contains all the information of a spatiotempor
561063-651X/97/56~3!/2568~5!/$10.00
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state. Suppose that the target pattern is described by a
tiotemporal functionun

i , j . Then our controlled system can b
formally written as

xn1m
i , j 5Fm~$xn%!2g@Fm~$xn%!2un

i , j #, ~2!

whereg is an empirically adjustable weight of the perturb
tion andFm($xn%) stands for themth iteration of the function
F. It follows immediately that once the system is controll
within the desired configuration characterized byun

i , j , the
forcing termg@Fm($x%)2un

i , j # vanishes. There are basical
two types of control, depending on the nature of the forc
term: the external force control, whereun

i , j represents spe
cially designed external coupled oscillators, and the dela
feedback control, whereun

i , j is a function ofxn2k
i , j with k

being an arbitrary integer.
Spatiotemporal patterns can be classified in terms of

characteristic wave vectorq0 and frequencyv0 of the insta-
bility. Type-Is systems (v050, q0Þ0) are stationary in time
and periodic in space; type-III0 systems (v0Þ0, q050) and
type-I0 systems (v0Þ0, q0Þ0) are periodic in both spac
and time@1#. One of the major purposes of this work is
show that all three types of instabilities can be suppresse
using a nonlinear feedback control method. Since our inte
is to control STC and select and stabilize an unstable s
tiotemporal pattern in a two-dimensional CML, we takea
54 in all our numerical simulations, which corresponds
the fully developed chaos in the logistic map. It is interesti
to note that even the dynamics of constituent element
fully chaotic; for certain diffusive couplinge there may exist
stable spatiotemporal patterns of the coupled system, s
of which may be reached after a long-time transient. O
method allows us to select those stable spatiotemporal
terns and study the dynamics of the coupled system nea
instability threshold.

For illustration of our method, we restrict ourselves to t
stabilization of two-state spatiotemporal patterns~STPs!,
where each individual site may either stay in one of the t
2568 © 1997 The American Physical Society
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FIG. 1. Stabilized patterns in two-dimensional coupled map lattices. The nonlinearity of the logistic map isa54 and the feedback
strength isg50.8. The diffusive coupling is taken to bee50.1, so that all pattern states are unstable. Here the solid squares repres
statex2 and the open squares are for the statex1 . The parameter~a! b51, ~b! b52, ~c! b53, and~d! b54.
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states or oscillate between these two states. Suppose th
two states are denoted byx1 andx2 . To describe STPs, we
introduce a parameterb, which represents the number o
antiphase neighboring sites. For example, if the site (i , j ) is
in the statex1 , thenb is the number of its neighboring site
that are in the statex2 . It is clear that for a square lattic
b<4. For stationary patterns, Eq.~1! can be reduced to

x15 f ~x1!1
be

4
@ f ~x2!2 f ~x1!#,

~3!

x25 f ~x2!1
be

4
@ f ~x1!2 f ~x2!#.

For oscillatory~temporally period-2! patterns, one has
the
x15 f ~x2!1

be

4
@ f ~x1!2 f ~x2!#,

~4!

x25 f ~x1!1
be

4
@ f ~x2!2 f ~x1!#.

The solutions to those equations withf (x) being the logistic
map are given by

x11x25l,

x15
l

2F11A12
2

la
~12a1la!G , ~5!

where
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FIG. 2. Different stabilized patterns forb52. Other parameter
values are the same as in Fig. 1. Note that in obtaining the targe
pattern~c! a time-dependent boundary condition, which is cons
tent with the oscillation pattern, is used; otherwise the perio
boundary condition is assumed.
l55
12

1

S 12
be

2 Da
for stationary patterns

11
1

S 12
be

2 Da
for oscillatory patterns.

~6!

These solutions exist only in the parameter range

1,l,2S 12
1

aD , ~7!

ke
-
c

FIG. 3. Time evolution of some individual sit at~a! e50.1 and
~b! e50.4. Other parameter values are the same as in Fig. 1.

FIG. 4. Bifurcation diagram corresponding to the stripe patt
as shown in Fig. 2~c!. This clearly shows that the stability of
spatiotemporal pattern varies with the diffusive couplinge.
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which sets a restriction for the diffusive couplinge, i.e.,

2

b
,e,

2

bS 11
1

a22D ~8!

for stationary patterns and

0,e,
2

bS 12
1

a22D ~9!

for oscillatory patterns. It should be emphasized that in t
work we consider only the simple, regular STPs. A detai
analysis of more complicated patterns will be given el
where@18#.

We performed numerical simulations of Eq.~2! on a two-
dimensional square lattice with lattice sizeN564. We used
random values as initial states in all the numerical simu
tions of Eq.~2!. Following Eq. ~5!, our control scheme for
period-2 orbit can be written as

xn12
i , j 5F2~$xn%!2g@F2~$xn%!2x1,2#, ~10!

where x1,2 are the two states in period-2 orbit, which a
given by Eq.~5!. The positions where the feedback is im
posed are determined according to the target patterns. In
eral, it is enough to control only one of the two states. In F
1 we show the stabilization of oscillatory two-state patte
for different b. The diffusive coupling is chosen such th
the spatiotemporal patterns are unstable. That is, without
plication of the control, the system exhibits spatiotempo
chaos. The structure information is fed into the syst
through specially designed feedbacks. It is interesting to n
that if a delayed feedback control like

xn12
i , j 5F2~$xn%!2g@F2~$xn%!2xn

i , j #, ~11!

is used instead, a checkerboard~spatiotemporal period-2!
pattern will be selected and stabilized. It is obvious that
the same parameterb, there may exist many different spati
patterns. For example, in Fig. 2 it is seen that various spa
patterns corresponding tob52 are stabilized. It should be
remarked that all the spatiotemporal patterns shown in Fi
are for the same values of system parameters and unde
same initial and boundary conditions@except Fig. 2~c!,
where a time-dependent boundary condition is used#. The
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only difference is the feedback, which is designed accord
to different target patterns. Since the feedback vanishes w
the control is achieved, the stabilized spatiotemporal pat
states are surely the solutions of the original system.

To illustrate the selection and stabilization of spatiote
poral patterns in a highly nonlinear system, we plot the ti
evolution of some individual site in Fig. 3. The control
turn on at iteration step 10 000 and turned off at 20 000. T
spatiotemporal pattern under consideration is the stripe
pattern as shown in Fig. 1~b!. We found that this state is
stable ate50.4 and unstable ate50.1 ~see Fig. 3!. A bifur-
cation diagram is shown in Fig. 4, where the amplitude
site ~40,15! is plotted against the diffusive couplinge for the
last 200 iterations after the control is turned off. The period
windows correspond to the stable stripelike pattern, while
chaotic regions indicate the destabilization of the once st
lized patterns. It is worthwhile to point out that the strip
pattern can be stabilized for all values of diffusive couplinge
over the range 0,e,0.5. Figure 4 shows that ase varies,
transitions between stable and unstable stripe-pattern s
occur alternatively, which seems to be a general feature
such pattern states.

In conclusion, we have presented a control method t
allows the selection and stabilization of unstable spatiote
poral patterns. The method has been applied successful
coupled map lattices and has allowed the determination
unstable pattern solution branches of the system. The t
nique is powerful, flexible, and robust against noise and
lows the stabilization of any unstable pattern state under
dom initial conditions.

Our simulation results show that by using the chaos c
trol method proposed in this work, one can manipulate
spatiotemporal patterns that are possible solutions of a
tially extended system, but are not observed under nat
conditions. This could have enormous technological imp
if such a manipulation can be realized in experiments. On
other hand, it may be assumed that in high-level life syste
~e.g., the neural system! there may exist a recognition
mechanism~associated with memory, for example! that can
select and stabilize a recognized pattern from an appare
chaotic signal. Such a filter function might explain why
neural system behaves quite reasonably while an appa
chaostic signal is propagating through it. It is expected t
much richer behaviors can be found if the manipulation id
is applied to other spatially extended systems, especially
reaction-diffusion system.
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