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Selection and stabilization of spatiotemporal patterns in two-dimensional coupled map lattices
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A method for the stabilization and manipulation of stable and unstable spatiotemporal patterns of a coupled
map lattice is presented. The selection of stable pattern states and the stabilization of unstable ones are
achieved by using nonlinear feedback that contains the structural and dynamical information of the target
patterns. The feedback vanishes once the spatiotemporal pattern is stabilized or selected.
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The pattern-forming phenomena in spatially extended sysstate. Suppose that the target pattern is described by a spa-
tems have attracted much attention recefithy5]. Such sys-  tiotemporal functioru;;! . Then our controlled system can be
tems often exhibit turbulence or spatiotemporal ch&¥&O), formally written as
in which many stable and unstable regular modes of spa- . .
tiotemporal patterns are embedded. In many cases, however, Xk m=FM({xa}) = Y F"({xn}) —uy'71, 2
it is desirable to make complex systems operate in highly ) o ) )
nonlinear regimes while retaining certain temporal and/of/here is an empirically adjustable weight of the perturba-
spatial coherence. Recently, there have been reports of stion andF"({x,}) stands for thenth iteration of the function
bilizing unstable patterns in spatially extended systemd - It follows immediately that once the system is controlled
[6-9]. The unstable states in such systems are typically highithin the desired configuration characterized by , the
dimensional and involve multiple stable and unstable modedorcing termy[ F™({x}) —u;;'] vanishes. There are basically
therefore, simple control approaches are unable to stabilize o types of control, depending on the nature of the forcing
specified spatiotemporal pattern. In this paper we present t&rm: the external force control, whetg’ represents spe-
technique that allows us to select and stabilize such unstabtgally designed external coupled oscillators, and the delayed
states. Our method can be regarded as a generalization of tfeedback control, where! is a function ofx;!, with k
nonlinear feedback approach developed by Pyragad 1. being an arbitrary integer.

We consider a two-dimensional coupled map lattice Spatiotemporal patterns can be classified in terms of the
(CML) [12-17 characteristic wave vectay, and frequency, of the insta-

bility. Type-Is systems =0, qo# 0) are stationary in time
o o € o L . and periodic in space; type-§lbystems {y# 0,qo=0) and
Xihi=(1—e)f(xgh )+ Z[f(X:q_l’J)‘*‘f(X'nﬂ’J)‘*'f(X'n’]_l) type-l, systems {o#0,qo#0) are periodic in both space
N and time[1]. One of the major purposes of this work is to
+EOITH], (1)  show that all three types of instabilities can be suppressed by
using a nonlinear feedback control method. Since our interest
wheren is a discrete time step and,]) denotes a two- i; to control STC and select e}nd stabilize an unstable spa-
dimensional lattice pointi(j=1,2, ... N, whereN denotes tlotemporal pattern In a tWO'd'me”S'O”a.' CML, we take
the system size The mapping function is chosen to be the =4 in all our numerical simulations, which corresponds to

logistic mapf (x) =ax(1—x). For convenience we introduce the fully developed chaos in th_e logistic map. Itis interesting
to note that even the dynamics of constituent elements is

fully chaotic; for certain diffusive coupling there may exist

(1 i € i—1j i+1j stable spatiotemporal patterns of the coupled system, some
FPah == ef (X0 + 4“(Xn )G of whichIO may b(i3 reacI?]ed after a Iong—tir?]e tra)rlwsient. Our
method allows us to select those stable spatiotemporal pat-
terns and study the dynamics of the coupled system near the
instability threshold.
where{x,} represents a set of states including the state of For illustration of our method, we restrict ourselves to the
site (i,j) and its neighboring sites. Note that the functionstabilization of two-state spatiotemporal patterf&TPs,
F({x,}) contains all the information of a spatiotemporal where each individual site may either stay in one of the two

+(x T+ ],

1063-651X/97/563)/25685)/$10.00 56 2568 © 1997 The American Physical Society



2569

SELECTION AND STABILIZATION OF . ..

111
111

il EEEEEEEEEER NN
e L O s
DRBEEEEBENNTNREERRE NN ERRRNDNE]
SR ENERRERREEERRARNR RN RANEEENL
R R R R O R
RS RO AERRNDEEESRERNNNBURRNNLRNDE
R R R R AR A R AR A N R
RN RN N RERER IR REER RN RN R Rl
DN EOE IR IR RN EEEE R R RN NN R RE RN
O O R R N AR
RN R RS RN N BN R ER NN REAER RN RUBERIRE
et
BErrrrcesrTaGrEIIITTRREREGRTNALY
A,
e
OO O O O R R
SRR E RN EEAEE SR RN RRNR NN RNRREEE
N BB B ERRNNE I EERREARRRERRERERE]
DR R NBRENESE RN RN R ERNRNRETRY
RN R RN EEENNE RS RN NRNNREERUNEBERET
BANNERREENE RO RO AR ER NIRRT
PR R RN ERE BRI IR RNNA R ERRRNREENN]
RRE RN RO EE NN TEEENR RN RN NNE RN
RN RN RREREE BN RN R RN R NIRRT
........................._._.n_............n_n........_n__......M

i
n
! ﬁ “
HEl m

e

B

(a)

dimensional coupled map lattices. The nonlinearity of the logistic maptisnd the feedback

FIG. 1. Stabilized patterns in two

so that all pattern states are unstable. Here the solid squares represent the

0.8. The diffusive coupling is taken to ke=0.1,

statex, and the open squares are for the stgqte The paramete(a) b

strength isy

=4,

1, (b) b=2,(c) b=3, and(d) b

be

f(xp)+ 2 [f(xp)—f(x2)],

states or oscillate between these two states. Suppose that the

two states are denoted by andx,. To describe STPs, we

4

X1:

introduce a parametdn, which represents the number of
antiphase neighboring sites. For example, if the difg) (is

in the statex;, thenb is the number of its neighboring sites

Xp=T(x0) + 7 [F(x) = Fx) .

It is clear that for a square lattice

b=<4. For stationary patterns, E@L) can be reduced to

that are in the stata,.

The solutions to those equations witfx) being the logistic

map are given by

x1=Fx) + 5 [F(x0) = f(x0)],

+X2:)\

X1

)

©)

2
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X1

=)+ 7 [f(x) = T(x2)].

X2

where

For oscillatory(temporally period-2 patterns, one has
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FIG. 2. Different stabilized patterns fdr=2. Other parameter 0 0,05 0T 0I5 0.2 0.25 0.3 0.3 oi4 0.45 0.5

values are the same as in Fig. 1. Note that in obtaining the targetlike DIFFUSTVE COUPLING

pattern(c) a time-dependent boundary condition, which is consis-  FIG. 4. Bifurcation diagram corresponding to the stripe pattern
tent with the oscillation pattern, is used; otherwise the periodicas shown in Fig. @). This clearly shows that the stability of a
boundary condition is assumed. spatiotemporal pattern varies with the diffusive coupling
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which sets a restriction for the diffusive couplimgi.e., only difference is the feedback, which is designed according
to different target patterns. Since the feedback vanishes when

2 2 1 the control is achieved, the stabilized spatiotemporal pattern
5< 6<5 1+ -2 (8) states are surely the solutions of the original system.
To illustrate the selection and stabilization of spatiotem-
for stationary patterns and poral patterns in a highly nonlinear system, we plot the time
evolution of some individual site in Fig. 3. The control is
2 1 turn on at iteration step 10 000 and turned off at 20 000. The
0< €<5(1_a—_2> 9 spatiotemporal pattern under consideration is the stripelike

pattern as shown in Fig.(h). We found that this state is

for oscillatory patterns. It should be emphasized that in thi$stable ate=0.4 and unstable at=0.1 (see Fig. 3 A bifur-
work we consider only the simple, regular STPs. A detailedcation diagram is shown in Fig. 4, where the amplitude of
analysis of more complicated patterns will be given elsesite (40,19 is plotted against the diffusive couplirgfor the
where[18]. last 200 iterations after the control is turned off. The period-2

We performed numerical simulations of Eg) on a two-  windows correspond to the stable stripelike pattern, while the
dimensional square lattice with lattice sike=64. We used chaotic regions indicate the destabilization of the once stabi-
random values as initial states in all the numerical simulalized patterns. It is worthwhile to point out that the stripe
tions of Eq.(2). Following Eq.(5), our control scheme for pattern can be stabilized for all values of diffusive coupkng
period-2 orbit can be written as over the range @ €<0.5. Figure 4 shows that asvaries,

transitions between stable and unstable stripe-pattern states
i occur alternatively, which seems to be a general feature of
Xk =FAah) = P20 —xial (0 g pattern states. J

In conclusion, we have presented a control method that

allows the selection and stabilization of unstable spatiotem-

posed are determined according to the target patterns. In geROr@l patterns. The method has been applied successfully to
eral, it is enough to control only one of the two states. In Fig.coUPIed map lattices and has allowed the determination of

1 we show the stabilization of oscillatory two-state patternd!NStable pattern solution branches of the system. The tech-
for differentb. The diffusive coupling is chosen such that Ndue is powerful, flexible, and robust against noise and al-

the spatiotemporal patterns are unstable. That is, without aﬂgws the stabilization of any unstable pattern state under ran-

plication of the control, the system exhibits spatiotemporad®m initial conditions. _
chaos. The structure information is fed into the system OUr Simulation results show that by using the chaos con-

through specially designed feedbacks. It is interesting to not©! method proposed in this work, one can manipulate the
that if a delayed feedback control like s_patlotemporal patterns that are possible solutions of a spa-
tially extended system, but are not observed under natural
conditions. This could have enormous technological impact
xir;L2= F2({xn}) — YL F2({Xn}) —xin'j], (11 ifsucha manipulation can be reaIizeq in_experime_nts. On the
other hand, it may be assumed that in high-level life systems
is used instead, a checkerboafghatiotemporal periody2 (e.g., the neural systemthere may exist a recognition
pattern will be selected and stabilized. It is obvious that formechanism(associated with memory, for exampliat can
the same parametbr there may exist many different spatial select and stabilize a recognized pattern from an apparently
patterns. For example, in Fig. 2 it is seen that various spatiathaotic signal. Such a filter function might explain why a
patterns corresponding to=2 are stabilized. It should be neural system behaves quite reasonably while an apparent
remarked that all the spatiotemporal patterns shown in Fig. 2haostic signal is propagating through it. It is expected that
are for the same values of system parameters and under theuch richer behaviors can be found if the manipulation idea
same initial and boundary conditiongexcept Fig. 2c), is applied to other spatially extended systems, especially the
where a time-dependent boundary condition is lis@the  reaction-diffusion system.

where x, , are the two states in period-2 orbit, which are
given by Eq.(5). The positions where the feedback is im-
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